请选择 进入手机版 | 继续访问电脑版

信用支付网

 找回密码
 立即注册
查看: 6358|回复: 0

大数据风控“瑕不掩瑜”,中腾信三大优势领先

[复制链接]

828

主题

828

帖子

828

积分

信用会员

积分
828
发表于 2020-12-29 13:30 | 显示全部楼层 |阅读模式
大数据风控“瑕不掩瑜”,中腾信三大优势领先


    随着大数据技术的日趋成熟,从商业科技到金融、政府、教育、医疗以及社会其他各个领域,大数据的影响力已经深入到世界的方方面面。其中,金融作为一个以数字体现价值的典型行业,已将大数据技术广泛应用于风险控制、客户管理、精准营销和产品服务创新等多个领域。

    大数据风控作为前沿技术在金融领域的最成熟应用,让高效的量化风控有了更多的想象力。然而,大数据风控作为一个新生事物,目前还处在摸着石头过河的阶段,数据来源的质量问题、风控模型的有效性问题、数据获取与用户隐私保护的平衡问题等,仍然是从业机构需要正视的问题。

    据中腾信了解所谓大数据技术是通过对海量数据进行数据整合、数据预处理、数据校对等方式把结构化数据以及非结构化数据进行清洗、抽取、转换成需要的数据,同时还可以保障数据的安全性以及完整性。

    大数据技术是消费金融风控系统的基础,目前,大数据抓取及数据处理技术主要应用于预授信、反欺诈模型、信用评分等环节。

    例如,预授信方面,根据不同信贷产品的特性,利用大数据库创建白名单,对潜在用户进行预授信,然后定向邀请。在反欺诈方面,一般采用多种策略综合验证打击欺诈攻击,解决方案包括采用逻辑违规算法,将多个弱相关变量放在一起建模;设立反欺诈“黑名单”,拦截有不良欺诈记录的申请者;对群体性欺诈攻击,进行集群分析,利用 SAS 链式聚类技术,实现无限层次申请链接分析等。信用评分则指的是通过收入计算模型、额度计算模型、人行评分模型等,从多个维度判断客户的授信额度,以快速处理大量信贷申请。

    大数据风控无论是在采集数据的种类和数量上、数据处理的速度上,还是在最终的效果上都远超传统型风控:

    大数据风控利用多维数据,可打破客群局限。大量非传统金融数据的分类提取和分析,可更全面地进行用户画像和风险评估,让金融机构在风险可控的前提下服务那些传统风控模式无法评估的群体。

    大数据风控可实现自动决策,实时审批。基于大数据风控模型,可提供7*24小时的服务,线上提交申请后,授信审批、额度发放等过程全自动运营,大幅缩短等待时间,提升了用户体验。

    大数据风控学习速度快。传统风控主要基于人工,而人的知识、能力和经验,在短期内不会有较大变化。大数据风控更新频率很高,随着人工智能、深度学习等技术的发展,大数据风控的科学性、准确性会越来越高。

    最后,大数据风控可以更有效地进行贷中和贷后控制。大数据风控在贷中阶段能随时监控用户交易行为,发现警报后马上处理,停止相关交易;在贷后则可以有针对性地采取催收措施,提高还款率。

    大数据技术在完善其风控流程,降低成本、提高效率、改善用户体验等方面拥有突出优势,中腾信及旗下小花钱包即得益于大数据风控技术的成熟应用,在信贷审批效率和风控质量等方面领先于同业,并因此被纳入金融城《消费金融风控创新白皮书》案例,以及央行金融研究所编写的《金融科技:发展趋势与监管》经典案例。

    以小花钱包为例,通过纯线上的大数据风控技术提高放款效率,其结合云计算和大数据模型,自主研发出RiskAI系统。在欺诈识别服务方面,小花通过与多家第三方征信机构合作,利用多维度征信数据对用户进行交叉核实与画像,杜绝批量集中的恶意欺诈风险;RiskAI系统还可提升业务自动化程度,实现自动精准获客,自动化风险识别辅助技术,自动化系统运维,将系统响应效率不断提高,极大提升用户体验。目前RiskAI已实现每天处理2万件,件均处理时效平均仅需3-5分钟,极大地提升了处理效率。


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

站点说明|联系我们|站内地图|信用支付网 ( 豫ICP备16007973号-6 )

GMT+8, 2022-12-2 03:07

Powered by Discuz! X3.2

Copyright © 2001-2021, Tencent Cloud.

返回顶部 返回列表